Current Issue : April - June Volume : 2021 Issue Number : 2 Articles : 5 Articles
Taking the linear inverted pendulum as the controlled object, the inverted pendulum simulation experimental platform is designed and implemented by Matlab/GUI. The platform includes six simulation experiments. Through the application of this platform in the experimental teaching and theoretical teaching of “modern control theory”, the practice shows that the platform can meet the requirements of verification, openness, design and other different levels of experiments, and through this platform, students can understand from the theoretical concept of control system to the specific control realization, which changes the previous dogma mode and realizes the combination of theory and practice....
The frequency stability of multi-microgrids is easily affected by random load fluctuations and intermittent renewable resources. Additionally, geographically distributed generation equipment usually cannot adopt the “point-to-point” dedicated communication scheme to realize the information exchange considering the construction and computation costs. Therefore, a H∞-switching frequency control strategy for multi-microgrids based on edge computing framework is proposed in this paper. Firstly, an edge computing device is set up in each microgrid to collect the operation statuses of local participating equipment and generate the control instructions to ensure the real-time local frequency stability. Secondly, the multihop data transmission process in edge computing environment is described as a cascade queuing model. Then, the frequency control system in each microgrid is described as a switching model dependent on the varying time delays. Finally, via constructing a Lyapunov function, the constraints of the controller gains ensuring the H∞-damping performance for external load demands and the renewable outputs are derived at the same time. Simulation results show that compared with the traditional centralized control schemes, the peak value of our proposed edge computing framework is reduced by 32.51% compared with the traditional centralized control scheme. Moreover, under the same edge computing framework, the integral of absolute error (IAE) of frequency with the proposed H∞ control strategy can be reduced by 37.19% at least. Therefore, a better transient performance can be obtained with our proposed method....
Advances in medical and communication technologies have empowered the development of Wireless Body Area Networks (WBANs). WBANs interconnect with miniature sensors placed on the human body to enable medical monitoring of patient health. However, the limited battery capacity, delay, and reliability of data transmission have brought challenges to the wider application of WBAN. Minimum consumption of energy and maximum satisfaction with the QoS requirements are essential design aims of the WBAN schemes. Therefore, a fuzzy control-based energy-aware routing protocol (EARP) is proposed in this paper, the proposed protocol establishes a fuzzy control model composed of remaining node energy and link quality, and the best forwarder node is determined by the processes of fuzzification, fuzzy inference, and defuzzification. The simulation results showed that compared with the performance of the existing EERDT and M-TSIMPLE protocols, the proposed EARP has better performance, including extending network lifetime and improving the reliability of data transmission....
In this paper, we develop an optimal control model of companies for the inheriting period, during which interphase banking and borrowing of allowances are allowable. By considering the emission reduction policy and the initial auction amount, we optimize the problem in two steps. The model is then converted into a two-dimensional Hamilton–Jacobi–Bellman equation. The numerical results, analysis, and comparisons are presented. Finally, we highlight several policy implications from the perspectives of companies and governments....
Aiming at solving the control problem of a constrained and perturbed underwater robot, a control method was proposed by combining the self-triggered mechanism and the nonlinear model predictive control (NMPC). The theoretical properties of the kinematic model of the underwater robot, as well as the corresponding MPC controller, are first studied. Then, a novel technique for determining the next update moment of both the optimal control problem and the system state is developed. It is further rigorously proved that the proposed algorithm can (1) stabilize the closed-loop underwater robot system, (2) reduce the time of solving the optimal control problem and (3) save the information transfer resources. Finally, a case study is provided to show the effectiveness of the developed researched scheme....
Loading....